105 research outputs found

    The structure and composition statistics of 6A binary and ternary crystalline materials

    Full text link
    The fundamental principles underlying the arrangement of elements into solid compounds with an enormous variety of crystal structures are still largely unknown. This study presents a general overview of the structure types appearing in an important subset of the solid compounds, i.e., binary and ternary compounds of the 6A column oxides, sulfides and selenides. It contains an analysis of these compounds, including the prevalence of various structure types, their symmetry properties, compositions, stoichiometries and unit cell sizes. It is found that these compound families include preferred stoichiometries and structure types that may reflect both their specific chemistry and research bias in the available empirical data. Identification of non-overlapping gaps and missing stoichiometries in these structure populations may be used as guidance in the search for new materials.Comment: 19 pages, 13 figure

    A high-throughput ab initio review of platinum-group alloy systems

    Get PDF
    We report a comprehensive study of the binary systems of the platinum group metals with the transition metals, using high-throughput first-principles calculations. These computations predict stability of new compounds in 38 binary systems where no compounds have been reported in the literature experimentally, and a few dozen of as yet unreported compounds in additional systems. Our calculations also identify stable structures at compound compositions that have been previously reported without detailed structural data and indicate that some experimentally reported compounds may actually be unstable at low temperatures. With these results we construct enhanced structure maps for the binary alloys of platinum group metals. These are much more complete, systematic and predictive than those based on empirical results alone.Comment: 24 pages, 12 figure

    Structure maps for hcp metals from first principles calculations

    Full text link
    The ability to predict the existence and crystal type of ordered structures of materials from their components is a major challenge of current materials research. Empirical methods use experimental data to construct structure maps and make predictions based on clustering of simple physical parameters. Their usefulness depends on the availability of reliable data over the entire parameter space. Recent development of high throughput methods opens the possibility to enhance these empirical structure maps by {\it ab initio} calculations in regions of the parameter space where the experimental evidence is lacking or not well characterized. In this paper we construct enhanced maps for the binary alloys of hcp metals, where the experimental data leaves large regions of poorly characterized systems believed to be phase-separating. In these enhanced maps, the clusters of non-compound forming systems are much smaller than indicated by the empirical results alone.Comment: 7 pages, 4 figures, 1 tabl

    A RESTful API for exchanging Materials Data in the AFLOWLIB.org consortium

    Get PDF
    The continued advancement of science depends on shared and reproducible data. In the field of computational materials science and rational materials design this entails the construction of large open databases of materials properties. To this end, an Application Program Interface (API) following REST principles is introduced for the AFLOWLIB.org materials data repositories consortium. AUIDs (Aflowlib Unique IDentifier) and AURLs (Aflowlib Uniform Resource locator) are assigned to the database resources according to a well-defined protocol described herein, which enables the client to access, through appropriate queries, the desired data for post-processing. This introduces a new level of openness into the AFLOWLIB repository, allowing the community to construct high-level work-flows and tools exploiting its rich data set of calculated structural, thermodynamic, and electronic properties. Furthermore, federating these tools would open the door to collaborative investigation of the data by an unprecedented extended community of users to accelerate the advancement of computational materials design and development.Comment: 22 pages, 7 figure

    AFLOW-SYM: Platform for the complete, automatic and self-consistent symmetry analysis of crystals

    Get PDF
    Determination of the symmetry profile of structures is a persistent challenge in materials science. Results often vary amongst standard packages, hindering autonomous materials development by requiring continuous user attention and educated guesses. Here, we present a robust procedure for evaluating the complete suite of symmetry properties, featuring various representations for the point-, factor-, space groups, site symmetries, and Wyckoff positions. The protocol determines a system-specific mapping tolerance that yields symmetry operations entirely commensurate with fundamental crystallographic principles. The self consistent tolerance characterizes the effective spatial resolution of the reported atomic positions. The approach is compared with the most used programs and is successfully validated against the space group information provided for over 54,000 entries in the Inorganic Crystal Structure Database. Subsequently, a complete symmetry analysis is applied to all 1.7++ million entries of the AFLOW data repository. The AFLOW-SYM package has been implemented in, and made available for, public use through the automated, ab-initio\textit{ab-initio} framework AFLOW.Comment: 24 pages, 6 figure
    • …
    corecore